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Dynamics and scaling of two-dimensional polymers in a dilute solution
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The breakdown of dynamical scaling for a dilute polymer solution in two dimensions has been suggested by
Shannon and Choy@Phys. Rev. Lett.79, 1455 ~1997!#. However, we show here through extensive computer
simulations that dynamical scaling holds when the relevant dynamical quantities are properly extracted from
finite systems. To verify dynamical scaling, we present results based on mesoscopic simulations in two dimen-
sions for a polymer chain in a good solvent with full hydrodynamic interactions. We also present analytical
arguments for the size dependence of the diffusion coefficient and find excellent agreement with the present
large-scale simulations.
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The dynamics of polymer chains has attracted atten
for decades already. In three dimensions, polymer dynam
exhibits rich and complex behavior which depends on
solvent conditions and polymer concentration@1,2#. The two-
dimensional case, however, has attracted much less atten
Recently, it has been realized that it has important appl
tions in the field of colloids and biomolecules. Exampl
include the 2D diffusion of DNA oligonucleotides confine
to interfaces@3# and the lateral diffusion of lipids and pro
teins along biological interfaces@4# such as cell membranes
Further, the dynamics of polymers in two dimensions is
major importance in thin films thinner the size of the po
mer. Wetting, surface adhesion, and flow in confined geo
etries are examples@5# of such problems.

An important feature of essentially all the 2D diffusio
processes in soft matter is that they take place in a solv
environment, which implies that the role of thehydrody-
namic interaction~HI! cannot be disregarded. It originate
from interactions mediated by the solvent in the presenc
momentum conservation. In three dimensions the effect
hydrodynamics are well understood: it is well known that t
dynamics of polymers in dilute solution is well described
the Zimm model@2#. In two dimensions, however, the situa
tion is more subtle as will be discussed below.

The dynamics of polymer chains is described by
theory of dynamical scaling@2#. The two key quantities are
the radius of gyrationRg and the center-of-mass~c.m.! dif-
fusion coefficientD of the chain. In the dilute limit, as a
function of the degree of polymerizationN, they follow the
scaling relationsRg;Nn andD;N2nD, with scaling expo-
nentsn andnD , respectively. Another central quantity is th
intermediate scattering function defined as

S~kW ,t !5~1/N!(
m,n

^exp$ ikW•@rWm~ t !2rWn~0!#%&, ~1!

wherekW is a wave vector, and$rWn% ’s are the positions of the
monomers. This function should scale as@2#

S~k,t !5k21/nF~ tkx!, ~2!
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where x is the dynamical scaling exponentrelated to the
other exponents through the relation

x521nD /n. ~3!

This is valid forkP(2p/Rg ,2p/a), wherea is the size of a
monomer. Equations~2! and ~3! are the cornerstones of dy
namical scaling of polymers.

In the purely dissipative case, the values of the scal
exponents for polymer chains are well understood@2#. In the
dilute limit the simple Rouse model givesn51/2 andnD
51. When proper volume exclusion is taken into accou
n53/4 in two dimensions and'3/5 in three dimensions
while nD51 still holds for dilute 3D systems and forall
polymer concentrations in two dimensions@6#.

However, when the HI is taken into account, the situat
becomes different. While in 3D theory and numerical sim
lations agree with the prediction of the Zimm equations t
n5nD ~i.e., x53) @7,8#, in two dimensions the situation i
less clear. It has been established both theoretically@1,2# and
computationally @9,10# that in good solvent conditions
n53/4 still holds in two dimensions. The situation withnD is
more subtle. Using lattice-gas simulations Vianney and Ko
man @10# found nD50.7860.05. The molecular dynamic
~MD! simulations ofS(k,t) by Shannon and Choy@9#, in
turn, gavex52 which implies thatnD50, if Eq. ~3! holds.
However, from their MD data forD vs N they concluded that
nD.0 thus contradicting the scaling law. They also solv
the Zimm equations numerically in two dimensions and ve
fied the result thatx52, but found that nownD,0 @9#.
These results prompted the authors of Ref.@9# to suggest that
dynamical scaling isbrokenfor 2D polymers. Essentially, the
very basis of polymer dynamics is being questioned.

In this paper, our objective is to determine the validity
dynamical scaling for 2D polymers. To this end, we extra
the exponentsn, nD , and x through extensive mesoscop
simulations of a 2D polymer in a good solvent with the fu
HI included. To complement this, we briefly describe an
lytic arguments which show that when finite-size effects
taken into account, the scaling ofD with respect toN is truly
logarithmic, leading tonD50 and thus tox52. Our numeri-
©2003 The American Physical Society02-1
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cal results verify both thatx52 and the predicted logarith
mic scaling ofD. Thus we conclude that dynamical scalingis
obeyed in two dimensions.

To overcome the significant difficulties in simulatin
polymers with full HIs, we employ a novel mesoscop
simulation method introduced by Malevanets and Kap
~MK ! @11,12#. It is essentially a hybrid molecular dynamic
scheme, where the polymer chain is treated microscopic
while the solvent obeys coarse-grained dynamics. In prac
this idea is implemented by choosing the monomer-mono
and monomer-solvent interactions as in MD simulatio
while the conservative interactions between the solv
particles are absent. This description preserves the hy
dynamic modes through so-called collision rules, and allo
for a major speedup compared to other techniques suc
MD.

To describe the dynamics of the coarse-grained solv
time is partitioned into segmentst and the simulation box is
divided into collision volumes or cells. The effective inte
actions between the solvent molecules take place at eact:
this is called a collision. In a collision the velocities of th
solvent particles are transformed according tovW i(t1t)5VW

1vW •@vW i(t)2VW #. HerevW i is the velocity of the particlei, VW is
the average velocity of all the particles in the cell the parti
i belongs to, andvW is a random rotation matrix chosen fo
that particular cell. It can be shown@11# that this multipar-
ticle collision dynamics conserves the momentum and
ergy in each collision volume, and thus gives a correct
scription of the hydrodynamics of the velocity field.

Our model system consists of a polymer chain withN
monomers immersed in a 2D coarse-grained solvent.
mass of a solvent particle is set tom, and the monomer mas
is 2m. The monomer-monomer and monomer-solvent in
actions are described by a truncated Lennard-Jones~LJ! po-
tential:

ULJ~r !5H 4e@~s/r !122~s/r !6#1e, r<21/6s

0, r .21/6s.
~4!

Here s and e together withm define the LJ unit system
where the unit of time is defined astLJ5sAm/e. In addition
to the LJ potential, there is an attractive finite extensi
nonlinear elastic potential between the nearest-neigh
monomers:

UC~r !52~aR0
2/2!ln~12r 2/R0

2!, ~5!

wherea57es22 andR052s.
The solvent density was set tor50.581s22, and the tem-

perature waskBT51.2e, yielding good solvent conditions
The equations of motion were integrated using the velo
Verlet algorithm with a time stepdt50.005tLJ . The choice
of the parameters that determine the collision dynamics fi
the properties of the coarse-grained solvent, e.g., its vis
ity. Here we set the collision time tot5tLJ and the linear
size of the cell tol c52s. The random rotation angles wer
chosen from a uniform distribution in@0,2p!. The size of the
polymer chainN varies from 20 to 150 monomers, and th
linear system sizeL ranges from 40s up to 420s. Periodic
05010
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boundary conditions were employed for all system sizes. T
c.m. diffusion coefficientD was determined using th
memory expansion method of Ref.@13#. As shown explicitly
in Ref. @13#, the memory expansion gives a result fully co
sistent with the mean square displacement analysis, bu
numerically more efficient.

First, we checked the scaling ofRg with NP@20,150#
@14# and found thatn50.7560.02, in excellent agreemen
with theory. Next, we computed the intermediate scatter
function S(k,t) which is depicted in Fig. 1. Our data sho
the best collapse withx52.060.1. We find thatall the
datasetscorresponding to differentN and L coalesce when
LRg

21@1, as they should. This confirms the MD results
Shannon and Choy@9#, and shows that the 3D Zimm resu
x53 is invalid in two dimensions.

Next, we address the crucial question of the value of
exponentnD . In the 3D case@8#, the finite-size dependenc
of D is D;1/L. Hence, in principle it is easy to determineD
for a fixed chain lengthN by running a series of simulation
for different values ofL, and then extrapolating toL→`. By
repeating this procedure for several values ofN, the exponent
nD can be determined.

However, in the 2D case the finite-size effects are mu
more subtle due to the infinite range of the HI. We ha
calculatedD analytically for a 2D polymer in a finite system
of size L using the approaches presented in Refs.@8,9,15#.
Here we shall assume that a finiteD exists in the limit t
→` ~see the discussion below! and follow Ref.@15# starting
from Eq. ~3.6!:

D5
kBT

N2hA
(

qP[2p/L,q0]
q22S~q! lim

k→0
k22(

l51

2

~kW• êl!2, ~6!

whereA is the area,h the solvent viscosity,S(q) the static
structure factor,q0 a cutoff implying that intermediate wav
vectors are considered, andêl a member of an orthonorma
set with ê25qW /q. Using the well-known result for long

FIG. 1. Scaling ofS(k,t) for NP$30,40,60,80,120,150% for sys-
tems where the ratioL/Rg.10 has been kept constant and for
polymer chain withN540 for different LP$40,80,120,60,200%.
All the 120 curves corresponding to differentkP@1.0,2.4#, N, and
L coalesce. The inset shows a scaling plot ofS(k,t) for a polymer
with N540 in a simulation box withL5120 with an exponent
x53.
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Gaussian chains thatS(q)52N2u24@exp(2u2)211u2# @2#,
whereu5(Rgq)2, this can be written as

D5
kBT

hp E
2pRg /L

q0Rg
dy@exp~2y2!211y2#y25. ~7!

Evaluating the integral and assuming thatq0Rg@1, we ar-
rive at @16#

D5
kBT

2hp
$2 ln~Rg /L !1const1O„~Rg /L !2

…%. ~8!

This shows that extractingnD in the ‘‘traditional’’ sense in
the thermodynamic limitL→` is no longer possible.

To numerically study the scaling ofD without any ap-
proximations, we determinedD for eachNP@20,80# with
different values ofL. For instance, forN530 we considered
the casesLP$60,90,120,150,180,210,240%. For everyN, we
examined the behavior ofD as a function of ln(1/L), and

FIG. 2. The dependence ofD on N for different cutoffsLcut .
The lines correspond toLcutP$102,103,104,105,106% from bottom
to top.
05010
found that the behavior indeed is linear. To estimate the
ponentnD in terms of effective diffusion coefficients, w
chose cutoff valuesLcutP$102,103,104,105,106%, and ex-
trapolated a valueD(N,Lcut) for each chain size and cutoff
If the data comply with Eq.~8!, we should, when plotting
D(N,Lcut) vs lnN, obtain a set of equally spaced straig
lines. Each line corresponds to a certain cutoff, and the li
should all have the same slopeA. As can be seen in Fig. 2
this indeed holds within the statistical uncertainties of o
data. Moreover, a quantitative comparison with Eq.~8! yields
a predictionD50.2s2tLJ

21ln(Rg /L). Our numerical data sug
gest thatD50.1s2tLJ

21ln(N/L), in excellent agreement with
our mean-field type of analytic approximation. Most impo
tantly, Fig. 2 confirms the prediction of logarithmic scalin
of D with N, which means thatnD50. To quantify this, we
can extract the exponentnD from lnD(N,Lcut) vs lnN: for
large values ofL, we should have lnD;2nDln N. The results
in Fig. 2 show thatnD decreases steadily withL as it should.
For the largestLcut studied here, we findnD'0.0560.05.

The analysis above reveals the reason for the sugge
breakdown of scaling in Refs.@9,10#. While the resultx52
is correct, as verified here, the results in the previous stu
for nD are incorrect because the exponent has been extra
without proper consideration of the finite-size effects@17#.
Thus, we can conclude that dynamical scaling holds for
polymers with x52, n53/4, and nD50. Intuitively, this
should be the case: in 2D and 3D dilute polymer solutio
HIs are expected to display so-called nondraining beha
@1,10#, i.e., solvent particles within the polymer coil will re
main inside the coil. From the solvent point of view, th
polymer coil is an inpenetrable obstacle. In three dimensio
nondraining behavior means that the diffusion coefficient
a polymer scales with its size as any spherical object, i.e
will be inversely proportional to the size of the polym
(Rg). Analogously, in two dimensions the c.m. diffusion c
efficient of a polymer chain should behave like that of
circular disk, i.e., depend logarithmically on its sizeRg and
on the system sizeL.

FIG. 3. The convergence ofD(t) vs time for systems with dif-
ferentN andL. The diffusion coefficients have been computed u
ing the memory expansion method@13#. The convergence has als
been checked using the conventional mean squared distance vs
analysis. We have explicitly ensured that the mean squared dist
depends linearly on time in the regime where the memory exp
sion seems to have converged; i.e.,^@rW(t)2rW(0)#2&;t1 for the
time-dependent c.m. position of the polymer.
2-3
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Finally, we wish to discuss the issue of long-time tails in
2D diffusion. In the presence of the HI it has be
shown that the velocity autocorrelation functionf(t)
[^vW i(t1t8)•vW i(t8)&;t21 @18#, or f(t);@ tAln(t)#21 @19#,
which means that rigorously speaking,D is not well defined
in two dimensions. This would seem to invalidate the pres
scaling arguments. However, there are several ways to
solve this problem. A standard method is to view the dif
sion coefficients in two dimensions as time-dependent qu
tities D(t) @19#, from which one can define effective value
of D[D(t f) at some finite timet f . In the present case, th
issue of long-time tails is settled by recognizing that in d
namical scaling, the absolute values of the diffusion coe
cients are irrelevant: only the behavior ofD as a function of
the chain or system size matters. Hence, we can use
effective values provided that they have been determined
consistent way. To this end, we have determinedD ’s over a
time interval where the coefficients have converged wit
numerical error. More precisely, assumingD;,D

2 /tD , where
,D is the distance over which the chain diffuses during
time interval tD , the diffusion coefficients have been me
sured at a point where the chain has diffused a scaled
tance,D /Rg52 –4. The convergence ofD(t) on these time
scales is demonstrated in Fig. 3 for systems with differ
values ofN andL.
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In conclusion, we have applied the MK method to a dilu
2D polymer solution. The method itself has proved to be
efficient tool for studies of macromolecular systems, es
cially in the dilute limit where the computational cost
mainly due to the explicit solvent. The technique has enab
us—at a moderate computational cost—to study system s
that have not been previously amenable to simulations. T
approach together with careful consideration of finite-s
effects has allowed us to solve the controversy regarding
dynamical scaling of dilute polymer solutions in two dime
sions with full HIs. We have found, in contrast to previo
studies @9,10#, that the exponent relationx521nD /n is
valid within numerical error. This justifies the scaling h
pothesis, and shows that the anomalous exponentx52 found
in previous studies is due to the logarithmic scaling ofD
with N.
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